Triangle Seminars
Monday, 10 Nov 2025
Lonti: Introduction to Matrix Models (4/4)
π London
Fedor Levkovich-Maslyuk
(City U.)
Abstract:
Models of random matrices can be viewed as zero-dimensional analogs of usual field theory. Despite decades of exploration, matrix models remain at the forefront of intensive research, motivated by a rich web of connections to string theory, quantum gravity, integrability, Yang-Mills theory, combinatorics, geometry and representation theory. These lectures will present a pedagogical introduction to the subject.
βLecture 1. Motivation and basic definitions. Hermitian matrix models: Feynman rules, ribbon graphs, large N genus expansion.
Lecture 2. Reduction to eigenvalues. Large N limit, Coulomb gas approach, saddle point equations.
Lecture 3. Continuum limit of saddle point equations. Eigenvalue density and spectral curve. Examples.
Lecture 4. Orthogonal polynomials. Relation to 2d gravity and phase transitions (sketch). Outlook: loop equations, topological recursion, integrability.
Models of random matrices can be viewed as zero-dimensional analogs of usual field theory. Despite decades of exploration, matrix models remain at the forefront of intensive research, motivated by a rich web of connections to string theory, quantum gravity, integrability, Yang-Mills theory, combinatorics, geometry and representation theory. These lectures will present a pedagogical introduction to the subject.
βLecture 1. Motivation and basic definitions. Hermitian matrix models: Feynman rules, ribbon graphs, large N genus expansion.
Lecture 2. Reduction to eigenvalues. Large N limit, Coulomb gas approach, saddle point equations.
Lecture 3. Continuum limit of saddle point equations. Eigenvalue density and spectral curve. Examples.
Lecture 4. Orthogonal polynomials. Relation to 2d gravity and phase transitions (sketch). Outlook: loop equations, topological recursion, integrability.
Posted by: Damian Galante
Tuesday, 11 Nov 2025
TBA
π London
Dionysios Anninos
(KCL)
Abstract:
TBA
TBA
Posted by: Sebastian Cespedes
Wednesday, 12 Nov 2025
TBA
π London
Sameer Murthy
(Kings College London)
TBA
π London
Laura Donnay
(SISSA)
Abstract:
TBA
TBA
Posted by: Andrew Svesko